Conditional Logic English to $\mathrm{A} \rightarrow \mathrm{B}$ Translations

 I. Easy

 I. Easy}

1. If M is selected N must be selected
2. M is true if D is true
3. At least one of A or B must be selected
4. C and D cannot both happen
5. If B is selected C also is
6. Whenever O is selected Q can't be
7. S is selected when R isn't selected
8. E occurs whenver D does not
9. L must be true anytime G is
10. Every Z is P
11. NoE is H

Conditional Logic English to $\mathrm{A} \rightarrow \mathrm{B}$ Translations

I. Easy - Answer Key

1. If M is selected N must be selected
2. M is true if D is true
3. Either A or B must be selected
4. C and D cannot both happen
5. If B is selected C also is
6. Whenever O is selected Q can't be
7. S is selected when R isn't selected
8. E occurs whenver D does not
9. L must be true anytime G is
10. Every Z is P
11. No E is H

$D \rightarrow E$
$G \rightarrow L$
$Z \rightarrow P$

K \rightarrow B

II. Medium

1. If R is then L and B are
2. H is selected only if G is not
3. D can't happen unless C happens
4. Either E or F must be true, but not both
5. Unless I is chosen, J must be
6. K must be true unless L is not
7. L must be selected except if J is selected
8. Only if X is selected can Y be
9. Q can't be in unless T and S are
10. The only time V can be true is if A is
11. Every N is R but not P
12. H is required for G
13. Only W is T

II. Medium - Answer Key

1. If R is then L and B are

$$
R \rightarrow L+B
$$

2. H is selected only if G is not

3. D can't happen unless C happens
4. Either E or F must be true, but not both
5. Unless I is chosen, I must be
6. K must be true unless L is not
7. L must be selected except if J is selected
8. Only if X is selected can Y be
9. Q can't be in unless T and S are
10. The only time V can be true is if A is
11. Every N is R but not P
12. H is required for G
13. Only W is T
$\mathrm{G} \rightarrow \mathrm{H}$

Z $\rightarrow \mathrm{F} \quad \mathrm{E} \rightarrow$ K
$\not \longrightarrow 1$
$L \rightarrow K$
$\gamma \rightarrow L$
$Y \rightarrow X$
X or $8 \rightarrow \varnothing$
$\mathrm{V} \rightarrow \mathrm{A}$
$N \rightarrow R+\not \subset$
$T \rightarrow W$

Conditional Logic English to $A \rightarrow B$ Translations

III. Hard

1. Neither C nor R can be true unless E or D are
2. Q must be selected, but not if P is
3. Unless T is selected V and W can't be
4. Z and Y must both be either in or out
5. Neither H nor I can be in except if W or Q are
6. D is not selected if and only if O is
7. R can't be selected whenever G is and B isn' t
8. Y can occur only if F doesn't or T does
9. If and only if G isn't selected, D is selected
10. Neither K nor H is selected except if F is
11. All Fs that are N are also G
12. Every O except those that B are W
13. Whenever Y occurs, L does too, unless E does
14. Only H are K except for J

III. Hard - Answer Key

1. Neither C nor R can be true unless E or D are
2. Q must be selected, but not if P is
3. Unless T is selected V and W can't be
4. Z and Y must both be either in or out
5. Neither H nor I can be in except if W or Q are
6. D is not selected if and only if O is
7. R can't be selected whenever G is and B isn't
8. Y can occur only if F doesn't or T does
9. If and only if G isn't selected, D is selected
10. Neither K nor H is selected except if F is
11. All Fs that are N are also G
12. Every O except those that B are W
13. Whenever Y occurs, L does too, unless E does
14. Only H are K except for J
$\not \subset+\varnothing \rightarrow \ell+K$
$\triangleright \rightarrow \mathrm{Q}$
$X \rightarrow+\cdots$
$Z \rightarrow{ }^{H} \quad Z \rightarrow Y$

$O \rightarrow \varnothing \quad \varnothing \rightarrow O$
$\mathrm{G}+\infty \rightarrow R$
Y \rightarrow 石 or T
b \rightarrow D D \rightarrow b
X \rightarrow 长 + X
$\mathrm{F}+\mathrm{N} \rightarrow \mathrm{G}$
$\mathrm{O}+\mathrm{B} \rightarrow \mathrm{W}$
$Y+Z \rightarrow L$
$\mathrm{K}+\Varangle \rightarrow \mathrm{H}$
